跳转至

2021

OpenMP Reductions

遇到竞争写情况怎么办

critical section

最简单的解决方案是通过声明一个critical部分来消除竞争。

double result = 0;
#pragma omp parallel num_threads(ndata)
{
  double local_result;
  int num = omp_get_thread_num();
  if (num==0)      local_result = f(x);
  else if (num==1) local_result = g(x);
  else if (num==2) local_result = h(x);
#pragma omp critical
  result += local_result;
}

double result = 0;
#pragma omp parallel
{
   double local_result;
#pragma omp for
   for (i=0; i<N; i++) {
    local_result = f(x,i);
#pragma omp critical
   result += local_result;
} // end of for loop
}

原子操作/加锁

性能是不好的,变串行了

#pragma omp atomic
 pi += sum;
static omp_lock_t lock;
void omp_init_lock(&lock):初始化互斥器
void omp_destroy_lock(omp_lock*):销毁互斥器
void omp_set_lock(omp_lock*):获得互斥器
void omp_unset_lock(omp_lock*):释放互斥器
void omp_test_lock(omp_lock*): 试图获得互斥器,如果获得成功则返回true,否则返回false

reduction clause 子句

将其添加到一个omp并行区域有如下效果。 * OpenMP将为每个线程制作一个reduction变量的副本,初始化为reduction操作的身份,例如\(1\)用于乘法。 * 然后,每个线程将其reduce到其本地变量中。 * 在并行区域结束时,本地结果被合并,再次使用reduction操作,合并到全局变量。

多个变量的情况

reduction(+:x,y,z)
reduction(+:array[:])

对于复杂结构体

如果代码过于复杂,还是建议复制全局变量来手工实现,最后再合并。

//错误示例
double result,local_results[3];
#pragma omp parallel
{
  int num = omp_get_thread_num();
  if (num==0)      local_results[num] = f(x)
  else if (num==1) local_results[num] = g(x)
  else if (num==2) local_results[num] = h(x)
}
result = local_results[0]+local_results[1]+local_results[2]
虽然上面这段代码是正确的,但它可能是低效的,因为有一个叫做虚假共享的现象。即使线程写到不同的变量,这些变量也可能在同一个缓存线上。这意味着核心将浪费大量的时间和带宽来更新对方的缓存线副本。

可以通过给每个线程提供自己的缓存线来防止错误的共享。

// 不是最好
double result,local_results[3][8];
#pragma omp parallel
{
  int num = omp_get_thread_num();
  if (num==0)      local_results[num][1] = f(x)
// et cetera
}
最好的方法给每个线程一个真正的局部变量,并在最后用一个critial部分对这些变量进行求和。
double result = 0;
#pragma omp parallel
{
  double local_result;
  local_result = .....
#pragam omp critical
  result += local_result;
}

默认的归约操作

Arithmetic reductions: \(+,*,-,\max,\min\)

Logical operator reductions in C: & && | || ^

归约变量的初始值

初始化值大多是不言而喻的,比如加法的0和乘法的1。对于min和max,它们分别是该类型的最大和最小可表示值。

用户自定义reduction的声明与使用

语法结构如下

#pragma omp declare reduction
    ( identifier : typelist : combiner )
    [initializer(initializer-expression)]
例子1: 取int最大
int mymax(int r,int n) {
// r is the already reduced value
// n is the new value
  int m;
  if (n>r) {
    m = n;
  } else {
    m = r;
  }
  return m;
}
#pragma omp declare reduction \
  (rwz:int:omp_out=mymax(omp_out,omp_in)) \
  initializer(omp_priv=INT_MIN)
  m = INT_MIN;
#pragma omp parallel for reduction(rwz:m)
  for (int idata=0; idata<ndata; idata++)
    m = mymax(m,data[idata]);

openmp减法归约浮点运算有精度损失

如何对vector归约

累加

#include <algorithm>
#include <vector>

#pragma omp declare reduction(vec_float_plus : std::vector<float> : \
                              std::transform(omp_out.begin(), omp_out.end(), omp_in.begin(), omp_out.begin(), std::plus<float>())) \
                    initializer(omp_priv = decltype(omp_orig)(omp_orig.size()))

std::vector<float> res(n,0);
#pragma omp parallel for reduction(vec_float_plus : res)
for(size_t i=0; i<m; i++){
    res[...] += ...;
}
编辑:原始initializer很简单:initializer(omp_priv = omp_orig)。但是,如果原始副本没有全零,结果将是错误的。因此,我建议使用更复杂的initializer,它总是创建零元素向量。

求最大值

#pragma omp declare reduction(vec_double_max : std::vector<double> : \
                          std::transform(omp_out.begin(), omp_out.end(), omp_in.begin(), omp_out.begin(), [](double a, double b) {return std::max(a,b);}))     \
                    initializer(omp_priv = decltype(omp_orig)(omp_orig.size()))

#pragma omp parallel for reduction(vec_double_max:maxlab)
for( int i = 0; i < sz; i++ )
{
   maxlab[klabels[i]] = max(maxlab[klabels[i]],distlab[i]);
}

std::transform

在指定的范围内应用于给定的操作,并将结果存储在指定的另一个范围内。

需要进一步的研究学习

  1. 对vector的归约

  2. 泥菩萨: 你这么改,开-g,在vtune里面看汇编

泥菩萨: 看有没有vmm指令

遇到的问题

暂无

开题缘由、总结、反思、吐槽~~

写IPCC发现:openmp没想象中简单,

参考文献

https://stackoverflow.com/questions/43168661/openmp-and-reduction-on-stdvector

https://pages.tacc.utexas.edu/~eijkhout/pcse/html/omp-reduction.html

http://www.cplusplus.com/forum/general/201500/

CPU vs GPU

GPU vs CPU

CPU: latency-oriented design

低延时的设计思路

  1. large L1 caches to reduce the average latency of data
  2. 时钟周期的频率是非常高的,达到3-4GHz
  3. Instruction-level parallelism to compute partial results ahead of time to further reduce latency
    1. 当程序含有多个分支的时候,它通过提供分支预测的能力来降低延时。
    2. 数据转发。 当一些指令依赖前面的指令结果时,数据转发的逻辑控制单元决定这些指令在pipeline中的位置并且尽可能快的转发一个指令的结果给后续的指令。

相比之下计算能力只是CPU很小的一部分。擅长逻辑控制,串行的运算。

GPU: throughput-oriented design

大吞吐量设计思路

  1. GPU采用了数量众多的计算单元和超长的流水线
  2. 但只有非常简单的控制逻辑
  3. 几乎省去了Cache。缓存的目的不是保存后面需要访问的数据的,减少cache miss。这点和CPU不同,而是为thread提高服务的。
  4. GPU “over-subscribed” threads: GPU运行任务会启动远超物理核数的thread,原因是借助极小的上下文切换开销,GPU能通过快速切换Threads/warps来隐藏访存延迟。
    1. GPU线程的创建与调度使用硬件而不是操作系统,速度很快(PowerPC创建线程需要37万个周期)1
    2. Cost to switch between warps allocated to a warp scheduler is 0 cycles and can happen every cycle.[^2]

对带宽大的密集计算并行性能出众,擅长的是大规模并发计算。

对比项 CPU GPU 说明
Cache, local memory 低延时
Threads(线程数)
Registers 多寄存器可以支持非常多的Thread,thread需要用到register,thread数目大,register也必须得跟着很大才行。
SIMD Unit 单指令多数据流,以同步方式,在同一时间内执行同一条指令

DRAM vs GDRAM

其实最早用在显卡上的DDR颗粒与用在内存上的DDR颗粒仍然是一样的。后来由于GPU特殊的需要,显存颗粒与内存颗粒开始分道扬镳,这其中包括了几方面的因素:

  1. GPU需要比CPU更高的带宽 GPU不像CPU那样有大容量二三级缓存,GPU与显存之间的数据交换远比CPU频繁,而且大多都是突发性的数据流,因此GPU比CPU更加渴望得到更高的显存带宽支持。位宽×频率=带宽,因此提高带宽的方法就是增加位宽和提高频率,但GPU对于位宽和频率的需求还有其它的因素。
  2. 显卡需要高位宽的显存显卡PCB空间是有限的,在有限的空间内如何合理的安排显存颗粒,无论高中低端显卡都面临这个问题。从布线、成本、性能等多种角度来看,显存都需要达到更高的位宽。 3090是384位。而内存则没有那么多要求,多年来内存条都是64bit,所以单颗内存颗粒没必要设计成高位宽,只要提高容量就行了,所以位宽一直维持在4/8bit。
  3. 显卡能让显存达到更高的频率显存颗粒与GPU配套使用时,一般都经过专门的设计和优化,而不像内存那样有太多顾忌。GPU的显存控制器比CPU或北桥内存控制器性能优异,而且显卡PCB可以随意的进行优化,因此显存一般都能达到更高的频率。而内存受到内存PCB、主板走线、北桥CPU得诸多因素的限制很难冲击高频率。由此算来,显存与内存“分家”既是意料之外,又是情理之中的事情了。为了更好地满足显卡GPU的特殊要求,一些厂商(如三星等)推出了专门为图形系统设计的高速DDR显存,称为“Graphics Double Data Rate DRAM”,也就是我们现在常见的GDDR。

内存频率

sudo dmidecode|grep -A16 "Memory Device"|grep "Speed"
   Speed: 2666 MT/s

显存等效频率

因为显存可以在一个时钟周期内的上升沿和下降沿同时传送数据,所以显存的实际频率应该是标称频率的一半。

从GDDR5开始用两路传输,GDDR6采用四路传输(达到类似效果)。

GDDR6X的频率估计应该至少从16Gbps(GDDR6目前的极限)起跳,20Gbps为主,这样在同样的位宽下,带宽比目前常见的14Gbps GDDR6大一半。比如在常见的中高端显卡256bit~384位宽下能提供512GB/s~768GB/s的带宽。

RTX 3090的GDDR6X显存位宽384bit,等效频率19Gbps到21Gbps,带宽可达912GB/s1006GB/s,达到T级。(384*19/8=912)

RTX 3090 加速频率 (GHz) 1.7, 基础频率 (GHz) 1.4

19/1.4 = 13.57
21/1.7 = 12.35

消费者设备 GDDR6x DDR4 的带宽对比

  • 上一小节 RTX 3090 带宽在912GB/s1006GB/s 附近
  • DRAM Types 一文里有分析,个人主机插满4条DDR4带宽" 3.2 Gbps * 64 bits * 2 / 8 = 51.2GB/s

可见两者差了20倍左右。

GPU / CPU workload preference

通过上面的例子,大致能知道: 需要高访存带宽和高并行度的SIMD的应用适合分配在GPU上。

最佳并行线程数

\[ 144 SM * 4 warpScheduler/SM * 32 Threads/warps = 18432 \]

参考文献

https://zhuanlan.zhihu.com/p/156171120?utm_source=wechat_session

https://www.cnblogs.com/biglucky/p/4223565.html

https://www.zhihu.com/question/36825227/answer/69351247

https://baijiahao.baidu.com/s?id=1675253413370892973&wfr=spider&for=pc

https://zhuanlan.zhihu.com/p/62234511

https://kknews.cc/digital/x6v69xq.html

AOCC

https://developer.amd.com/amd-aocc/

Install

cd <compdir>\
tar -xvf aocc-compiler-<ver>.tar
cd aocc-compiler-<ver>
bash install.sh
# It will install the compiler and displaythe AOCC setup instructions.

source <compdir>/setenv_AOCC.sh
# This will setup the shell environment for using AOCC C, C++, and Fortran compiler where the command is executed.

Using AOCC

Libraries

需要进一步的研究学习

暂无

遇到的问题

暂无

开题缘由、总结、反思、吐槽~~

参考文献

https://developer.amd.com/wp-content/resources/AOCC_57223_Install_Guide_Rev_3.1.pdf

AMD Epyc Compiler Options

AMD EPYC™ 7xx2-series Processors Compiler Options Quick Reference Guide

AOCC compiler (with Flang -Fortran Front-End)

Latest release: 2.1, Nov 2019

https://developer.amd.com/amd-aocc/Advanced

GNU compiler collection (gcc, g++, gfortran)

Intel compilers (icc, icpc, ifort)

amd prace guide

需要进一步的研究学习

  1. Amd uprof
  2. PGI compiler
  3. Numactl
  4. OMP_PROC_BIND=TRUE; OMP_PLACES=sockets

遇到的问题

暂无

开题缘由、总结、反思、吐槽~~

参考文献

https://developer.amd.com/wordpress/media/2020/04/Compiler%20Options%20Quick%20Ref%20Guide%20for%20AMD%20EPYC%207xx2%20Series%20Processors.pdf

https://prace-ri.eu/wp-content/uploads/Best-Practice-Guide_AMD.pdf#page35

Prace guide

Intel Compile Options

Win与Linux的区别

选项区别

对于大部分选项,Intel编译器在Win上的格式为:/Qopt,那么对应于Lin上的选项是:-opt。禁用某一个选项的方式是/Qopt-和-opt-。

Intel的编译器、链接器等

在Win上,编译器为icl.exe,链接器为xilink.exe,VS的编译器为cl.exe,链接器为link.exe。

在Linux下,C编译器为icc,C++编译器为icpc(但是也可以使用icc编译C++文件),链接器为xild,打包为xiar,其余工具类似命名。

GNU的C编译器为gcc,C++编译器为g++,链接器为ld,打包为ar

并行化

-qopenmp

-qopenmp-simd

如果选项 O2 或更高版本有效,则启用 OpenMP* SIMD 编译。

-parallel

告诉自动并行程序为可以安全地并行执行的循环生成多线程代码。

要使用此选项,您还必须指定选项 O2 或 O3。 如果还指定了选项 O3,则此选项设置选项 [q 或 Q]opt-matmul。

-qopt-matmul

启用或禁用编译器生成的矩阵乘法(matmul)库调用。

向量化(SIMD指令集)

-xHost

必须至少与-O2一起使用,在Linux系统上,如果既不指定-x也不指定-m,则默认值为-msse2。

-fast

On macOS* systems: -ipo, -mdynamic-no-pic,-O3, -no-prec-div,-fp-model fast=2, and -xHost

On Windows* systems: /O3, /Qipo, /Qprec-div-, /fp:fast=2, and /QxHost

On Linux* systems: -ipo, -O3, -no-prec-div,-static, -fp-model fast=2, and -xHost

指定选项 fast 后,您可以通过在命令行上指定不同的特定于处理器的 [Q]x 选项来覆盖 [Q]xHost 选项设置。但是,命令行上指定的最后一个选项优先。

-march

必须至少与-O2一起使用,如果同时指定 -ax 和 -march 选项,编译器将不会生成特定于 Intel 的指令。

指定 -march=pentium4 设置 -mtune=pentium4。

-x

告诉编译器它可以针对哪些处理器功能,包括它可以生成哪些指令集和优化。

AMBERLAKE
BROADWELL
CANNONLAKE
CASCADELAKE
COFFEELAKE
GOLDMONT
GOLDMONT-PLUS
HASWELL
ICELAKE-CLIENT (or ICELAKE)
ICELAKE-SERVER
IVYBRIDGE
KABYLAKE
KNL
KNM
SANDYBRIDGE
SILVERMONT
SKYLAKE
SKYLAKE-AVX512
TREMONT
WHISKEYLAKE

-m

告诉编译器它可能针对哪些功能,包括它可能生成的指令集。

-ax

生成基于多个指令集的代码。

HLO

High-level Optimizations,高级(别)优化。O1不属于

-O2

更广泛的优化。英特尔推荐通用。

在O2和更高级别启用矢量化。

在使用IA-32体系结构的系统上:执行一些基本的循环优化,例如分发、谓词Opt、交换、多版本控制和标量替换。

此选项还支持:

内部函数的内联
文件内过程间优化,包括:
   内联
   恒定传播
   正向替代
   常规属性传播
   可变地址分析
   死静态函数消除
   删除未引用变量
以下性能增益功能:
   恒定传播
   复制传播
   死码消除
   全局寄存器分配
   全局指令调度与控制推测
   循环展开
   优化代码选择
   部分冗余消除
   强度折减/诱导变量简化
   变量重命名
   异常处理优化
   尾部递归
   窥视孔优化
   结构分配降低与优化
   死区消除

-O3

O3选项对循环转换(loop transformations)进行更好的处理来优化内存访问。

比-O2更激进,编译时间更长。建议用于涉及密集浮点计算的循环代码。

既执行O2优化,并支持更积极的循环转换,如Fusion、Block Unroll和Jam以及Collasing IF语句。

此选项可以设置其他选项。这由编译器决定,具体取决于您使用的操作系统和体系结构。设置的选项可能会因版本而异。

当O3与options-ax或-x(Linux)或options/Qax或/Qx(Windows)一起使用时,编译器执行的数据依赖性分析比O2更严格,这可能会导致更长的编译时间。

O3优化可能不会导致更高的性能,除非发生循环和内存访问转换。在某些情况下,与O2优化相比,优化可能会减慢代码的速度。

O3选项建议用于循环大量使用浮点计算和处理大型数据集的应用程序。

与非英特尔微处理器相比,共享库中的许多例程针对英特尔微处理器进行了高度优化。

-Ofast

-O3 plus some extras.

IPO

Interprocedural Optimizations,过程间优化。

典型优化措施包括:过程内嵌与重新排序、消除死(执行不到的)代码以及常数传播和内联等基本优化。

过程间优化,当程序链接时检查文件间函数调用的一个步骤。在编译和链接时必须使用此标志。使用这个标志的编译时间非常长,但是根据应用程序的不同,如果与-O*标志结合使用,可能会有明显的性能改进。

内联

内联或内联展开,简单理解,就是将函数调用用函数体代替,主要优点是省去了函数调用开销和返回指令的开销,主要缺点是可能增大代码大小。

PGO

PGO优化是分三步完成的,是一个动态的优化过程。

PGO,即Profile-Guided Optimizations,档案导引优化。

具体选项详解

-mtune=processor

此标志对特定的处理器类型进行额外的调整,但是它不会生成额外的SIMD指令,因此不存在体系结构兼容性问题。调优将涉及对处理器缓存大小、指令优先顺序等的优化。

为支持指定英特尔处理器或微体系结构代码名的处理器优化代码。

-no-prec-div

不启用 提高浮点除法的精度。

-static

不用动态库

-fp-model fast=2

自动向量化时按照固定精度,与OpenMP的选项好像有兼容性的问题

-funroll-all-loops

展开所有循环,即使进入循环时迭代次数不确定。此选项可能会影响性能。

-unroll-aggressive / -no-unroll-aggressive

此选项决定编译器是否对某些循环使用更激进的展开。期权的积极形式可以提高绩效。

此选项可对具有较小恒定递增计数的回路进行积极的完全展开。

falign-loops

将循环对齐到 2 的幂次字节边界。

-falign-loops[=n]是最小对齐边界的可选字节数。它必须是 1 到 4096 之间的 2 的幂,例如 1、2、4、8、16、32、64、128 等。如果为 n 指定 1,则不执行对齐;这与指定选项的否定形式相同。如果不指定 n,则默认对齐为 16 字节。

-O0 / -Od

关闭所有优化选项,-O等于-O2 (Linux and macOS)

-O1

在保证代码量不增加的情况下编译,

  1. 实现全局优化;这包括数据流分析、代码运动、强度降低和测试替换、分割生存期分析和指令调度。
  2. 禁用某些内部函数的内联。

遇到的问题

 icpc -dM -E -x c++ SLIC.cpp

https://stackoverflow.com/questions/34310546/how-can-i-see-which-compilation-options-are-enabled-on-intel-icc-compiler

parallel 与mpicc 或者mpiicc有什么区别呢

开题缘由、总结、反思、吐槽~~

讲实话,IPO PGO我已经晕了,我先列个list,之后再研究

参考文献

https://blog.csdn.net/gengshenghong/article/details/7034748

按字母顺序排列的intel c++编译器选项列表

IPCC Preliminary SLIC Optimization 2

chivier advise on IPCC amd_256

技术路线 描述 时间 加速比 备注
Baseline 串行程序 21872 ms 1
核心循环openmp 未指定 8079ms
核心循环openmp 单节点64核 7690ms 2.84
换intel的ipcp 基于上一步 3071 ms 7.12
-xHOST 其余不行,基于上一步 4012ms
-O3 基于上一步 3593ms

node5

Intel(R) Xeon(R) Platinum 8153 CPU @ 2.00GHz

技术路线 描述 时间 加速比 备注
Baseline 串行程序 29240 ms 1
核心循环openmp 未指定(htop看出64核) 12244 ms
去除无用计算+两个numk的for循环 080501 11953 ms 10054 ms
计算融合(去除inv) 080502 15702 ms 14923 ms 15438 ms 11987 ms
maxlab openmp 基于第三行080503 13872 ms 11716 ms
循环展开?? 14436 ms 14232 ms 15680 ms

-xCOMMON-AVX512 not supports

Please verify that both the operating system and the processor support Intel(R) X87, CMOV, MMX, FXSAVE, SSE, SSE2, SSE3, SSSE3, SSE4_1, SSE4_2, MOVBE, POPCNT, AVX, F16C, FMA, BMI, LZCNT, AVX2, AVX512F, ADX and AVX512CD instructions.
-xCORE-AVX2
Please verify that both the operating system and the processor support Intel(R) X87, CMOV, MMX, FXSAVE, SSE, SSE2, SSE3, SSSE3, SSE4_1, SSE4_2, MOVBE, POPCNT, AVX, F16C, FMA, BMI, LZCNT and AVX2 instructions
没有 FXSAVE,BMI,LZCNT 有BMI1,BMI2

使用-xAVX,或者-xHOST 来选择可用的最先进指令集

Please verify that both the operating system and the processor support Intel(R) X87, CMOV, MMX, FXSAVE, SSE, SSE2, SSE3, SSSE3, SSE4_1, SSE4_2, POPCNT and AVX instructions.

-fast bugs

ld: cannot find -lstdc++
ld: cannot find -lstdc++
/public1/soft/intel/2020u4/compilers_and_libraries_2020.4.304/linux/compiler/lib/intel64_lin/libiomp5.a(ompt-general.o): In function `ompt_pre_init':
(.text+0x2281): warning: Using 'dlopen' in statically linked applications requires at runtime the shared libraries from the glibc version used for linking
/var/spool/slurm/d/job437118/slurm_script: line 23: ./SLIC_slurm_intel_o3: No such file or directory

AMD EPYC 7~~2

icpc -Ofast -march=core-avx2 -ipo -mdynamic-no-pic -unroll-aggressive -no-prec-div -fp-mode fast=2 -funroll-all-loops -falign-loops -fma -ftz -fomit-frame-pointer -std=c++11 -qopenmp SLIC_openmp.cpp -o SLIC_slurm_intel_o3

后续优化

基于核心的openmp并行

去除无用计算

delete all maxxy
if(maxxy[klabels[i]] < distxy[i]) maxxy[klabels[i]] = distxy[i];

计算融合(减少访存次数)

  1. 将inv去除(效果存疑)
  2. maxlab openmp并行(由于不是计算密集的,是不是要循环展开)

需要进一步的研究学习

暂无

遇到的问题

暂无

开题缘由、总结、反思、吐槽~~

参考文献

WebCrawler first try

常见的仿站软件尝试

  1. wget -c -r -np -k -L -p 递归下载
  2. webCopy
  3. WinHTTrack
  4. Octoparse
  5. Teleport pro

遇到的问题

尝试后下载了一些html\css\js文件。但是没有达到我的要求。

我猜测的爬取原理,根据网站返回的index.html以及文件里指向的新文件路径进行递归下载。

这样的问题有:

  1. 无法对json文件里指向的材质包路径进行递归下载
  2. 无法读取指定网站文件夹的目录,导致不知道文件夹里有什么文件
  3. 假如有ftp://可能可以

需要进一步的研究学习

  1. 通过python实现对json文件里指向的材质包路径进行递归下载(感觉只能半自动)
  2. 读取指定网站文件夹的目录

开题缘由、总结、反思、吐槽~~

在找live2d模型的时候找到了 https://github.com/Eikanya/Live2d-model ,然后其中有个HSO的demo网站https://l2d.alg-wiki.com/。

然后一开始我想在自己页面做一个仿站,后来了解后只想把他里面的live2d的材质数据、贴图等爬下来。但是遇到了几个问题。

参考文献

https://www.shuzhiduo.com/A/E35pV9EAzv/

python crawler

IPCC Preliminary SLIC Optimization 1

第一部分优化

从数据重用(不重复计算,降低计算量)、计算融合(减少访存次数)、循环重组、改变数据结构入手

数据重用

主体变量数据依赖梳理

一开始所有的RGB颜色在ubuff里,klabel存分类结果

首先经过转换,将ubuff的RGB转换为lvec avec bvec三个double[sz]数组 存在私有变量m_lvec m_avec m_bvec,供class内访问

优化建议:lab三种颜色存在一起,访问缓存连续

DoRGBtoLABConversion(ubuff, m_lvec, m_avec, m_bvec);

计算冗余一:

计算出的全体edges,只有一部分在后面一个地方用了196个中心以及周围8个节点。

优化建议:要用edges时再计算(保证了去除不必要计算和计算融合)

优化建议:kseedsl/a/b/x/y 分别用5个vector存是不好的,每个中心的5元组要存在一起,因为访问和修改都是一起的。

优化建议: 1. 核心计算,是不是要拆开? 2. 除以maxlab[n],改成乘1/maxlab[n] 3. maxxy没有用,可以除去定义与数组维护(line 429) 4. disxy[i]也就可以不用数组

优化建议: 1. if判断用掩码 2. 想将与每个像素i有关的属性放在一起,但是distvec要全部初始化。那我维护char*的passcheck数组判断是否已经遍历?未遍历直接赋值,已经遍历,比较后判断是否赋值。 3. 对于2和并行化这个部分的问题:1.按照中心划分,存储每个点的距不同中心的距离,最后归约取最小。2. 并行还是按照坐标划分,判断在哪几个区域内,然后计算距离最小的)

优化建议: 1. 对于求和部分labxy与1/clustersize??存在一起 2. 这部分按坐标并行时,归约的是196个元素的最小值或者求和

vector 连续性

vector中的元素在内存中是连续存储的.

vector的实现是由一个动态数组构成. 当空间不够的时候, 采用类似于C语言的realloc函数重新分配空间. 正是因为vector中的元素是连续存储的, 所以vector支持常数时间内完成元素的随机访问. vector中的iterator属于Random Access Iterator.

cache缓存原理疑问

每级cache难道只存读取数据周围的所有地址数据吗?还是一块一块读的。

假如调度是一块一块读取的而且cache足够大存下时,对于m_lvec m_avec m_bvec,假如各读取同一块,会导致和将其存储在一起是一样的效果。对于m_lvec[i]的下一个元素m_lvec[i+1],m_avec[i+1],m_bvec[i+1]也在cache中。

chivier 建议

#pragma omp parallel for collapse(2)
icpc -xCOMMON-AVX512 -O3 -std=c++11 -qopenmp SLIC.cpp -o SLIC
g++ -fopenmp
先openMP优化,然后MPI一分为二
数据结构没有必要改,不会访存连续
minicoda for tmux zsh htop gcc9

pip install gdbgui to localhost

gdb tui enable

需要进一步的研究学习

暂无

遇到的问题

暂无

参考文献