跳转至

笔记

劝退指南:不是博客,而是笔记,甚至是草稿

写笔记是为了让自己看懂,写博客是为了让别人看懂,不一样的,认真做好后者对自己各方面能力的提升会非常大(比如表达能力),其实很多时候记笔记就是写几段自己能看懂的表达,很随性,但写博客更像是写一篇论文,需要自己先彻底搞明白一个东西后才能输出1

我一直努力将内容写成博客。但是后来发现,根本没有时间和心思,来为别人解释很多事情。我的想法是最多是解释给多年后忘记一切的自己听,我还能快速看懂。能达到这点,这些内容的意义对于我就已经足够。

从读者的角度,我并不会推荐任何人阅读这个网站的内容:因为你会遇到以下令人烦躁的场景

  1. 完整性差:某些笔记写着写着就没有了,内容是残缺的。甚至只有一个标题。(这是因为我没有时间填充内容,或者我的研究和注意力转变方向了,弃坑了弃坑了~)
  2. 可读性一般:很少有起承转合的解释语句,笔记的内容逻辑几乎全部靠多级标题维持.
  3. 笔记间关联性低:从读者的角度是看不到本人是如何使用多级文件夹,来组织划分笔记间的内容逻辑。如果你在搜索栏找不到你想要的关键词,那大概率我没接触到这方面的内容。
知识是自然聚类和融合的,但需要两级的文档来过滤内容和撰写正文。小而全、无懈可击的内容应该是所追求的

导致这种情况,其实和我对知识产出过程的理解有关,我认为过程是 知识是自然聚类和融合的

  1. 接触到领域对象(新建文件夹)
  2. 阅读各种文献网站(零散的知识进行简单的聚类)
  3. 上手实践和研究(踩了许多坑,有或多或少的感悟)。

而且三者的占比是前面远大于后面,这样看来我这网站大部分的内容岂不是都是笔记的草稿

我以这样的方式撰写我的正式的毕业论文时,发现这样的处理有利有弊:

  1. 优势:
    1. 速度?:能快速的罗列出内容,填充了大量垃圾内容
    2. 完备性:保留所有必要的相关信息,
  2. 劣势:
    1. 对工作进度的误判:罗列的大量页数迷惑了自己,以为进度很快。其实仔细思路内容的有效性、逻辑关联性。核心观点的提炼。遣词造句都极其耗费时间。
      1. 最重要是导致只看页数的领导对你工作速度的误判导致的嫌弃:一周前就看见里论文写了60页了,怎么两周了还没写完。或者你都60页了快结束了,来帮帮我弄这个~阿米诺斯~
    2. 需要返工:重新整理罗列的垃圾内容,至少需要三倍以上的时间才能整理好。

总结:知识是自然聚类和融合的思想是没错的,但是在实际生产应用时需要两级的信息筛选过滤体系:区分出正文内的todo内容和未整理的archived信息。通过将罗列的完备信息初步分类归档(有基础的逻辑)以待后续使用,正文精心撰写每一句话保证不需要大量返工。

QCC:Quality Control Circle

导言

QCC(Quality Control Circle, 质量控制小组):由一小群员工组成的团队,定期开会以识别、分析和解决与工作相关的质量问题。起源于日本,广泛应用于制造业、医疗保健和服务行业。

也被用在华为的开发流程中,用于发现问题,分析、设计并解决问题,最后落回版本能力。

SGLang

导言

  • SGLang , 24年1月开源,这是一个由 LMSYS Org 团队开发的、面向大语言模型(LLM)和视觉语言模型(VLM)的高性能、开源通用服务引擎。
  • 性能更加惊艳。在运行 Llama 3.1 405B 时,它的吞吐量和延迟表现都优于 vLLM 和 TensorRT-LLM,甚至能达到 TensorRT-LLM 的 2.1 倍,vLLm 的 3.8 倍。
  • 业界 xAI 的 Grok2 目前已采用 SGLang 作为其 LLM 推理引擎, 显著提升了分析信息和输出响应速度。Microsoft Azure 使用 SGLang。

DiffSynth & ms-swift

导言

DiffSynth-Studio 是由魔搭社区(ModelScope, 阿里2022年11月开源的模型社区)算法工程师段忠杰主导开发的开源扩散模型引擎,致力于构建统一的 Diffusion 模型生态。该项目支持多种主流文生图/文生视频模型(如 Stable Diffusion、可图、CogVideoX),并兼容 ControlNet、LoRA、IP-Adapter 等生态模型,显著提升中文场景下的生成能力。1

ms-swift3是魔搭社区提供的大模型与多模态大模型微调部署框架,现已支持600+纯文本大模型与300+多模态大模型的训练(预训练、微调、人类对齐)、推理、评测、量化与部署。

  • 其中大模型包括:Qwen3、Qwen3-Next、InternLM3、GLM4.5、Mistral、DeepSeek-R1、Llama4等模型,
  • 多模态大模型包括:Qwen3-VL、Qwen3-Omni、Llava、InternVL3.5、MiniCPM-V-4、Ovis2.5、GLM4.5-V、DeepSeek-VL2等模型。

除此之外,ms-swift汇集了最新的训练技术,包括集成

  • Megatron并行技术,包括TP、PP、CP、EP等为训练提供加速,
  • 以及众多GRPO算法族强化学习的算法,包括:GRPO、DAPO、GSPO、SAPO、CISPO、RLOO、Reinforce++等提升模型智能。
  • DPO、KTO、RM、CPO、SimPO、ORPO等偏好学习算法,
  • 以及Embedding、Reranker、序列分类任务。

ms-swift提供了大模型训练全链路的支持,包括使用

  • vLLM、SGLang和LMDeploy对推理、评测、部署模块提供加速,
  • 以及使用GPTQ、AWQ、BNB、FP8技术对大模型进行量化。

VeOmni

导言

VeOmni 是字节跳动与火山引擎联合研发的 统一多模态训练框架,核心目标是解决多模态模型(如 DiT、LLM、VLM、视频生成模型)训练中的碎片化问题,实现 “统一多模态、统一并行策略、统一算力底座”。其经过千卡级真实训练任务验证,支持从百亿级语言模型到 720P 视频生成模型的全流程训练。1

Pip Cache

导言

VeRL场景开发时,安装包特别多和复杂:

  1. CANN
  2. torch\torch_npu
  3. vllm\vllm_ascend
  4. MindSpeed\megatron
  5. transformer

开发时还要pip install -e . 还要修改代码。

传统的思路是docker镜像或者conda打大包,但是这种包一个就是20GB+,但是这是商发时的策略,开发时即使只是修改一行,但是还是要重新出一个20GB大包。

思路是借助并加速pip的原子化构建:

  • 在内网服务器上建立一个pip包缓存站,
  • 不仅能缓存官方包,
  • 自己修改的代码包也能提交。
  • 最终实现,除了CANN安装,其余pip包,一行pip intall -r requirements.txt就行。

Omni-Modal: AR vs DiT

导言

全模态大模型(Omnimodal Large Models, OLMs),以下简称Omni模型,有时也称之为“端到端多模态大模型”。 它主要解决的文本、图片、语音多模态理解与实时交互的协同问题(图片修改),最新的研究也会涉及统一推理和图像生成。

当前多模态设计中AR和DiT的组合关系,单独学习一下

vllm-omni

导言

vllm专门为了多模态单独推出了推理框架vllm-omni,调研一下